Ohwada, K. (1975). Spectrochim. Acta Part A, 31, 973-977.

Ohwada, K. (1978). J. Inorg. Nucl. Chem. 40, 1369-1374.

Ohwada, K. (1979). J. Inorg. Nucl. Chem. 41, 1145-1147.

Ohwada, K. (1980). Appl. Spectrosc. 34, 327-331.

- Phan Dinh Kien, Kovrikov, A. & Komyak, A. (1973). J. Appl. Spectrosc. 18, 336-343.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Tutov, A. G., Plakhtii, V. P., Usov, O. A., Bublyaev, P. A. & Chernenkov, Yu. P. (1991). Kristallografiya, 36, 1135-1138.
- Tutov, A. G., Solomonov, Y. F., Solntseva, L. V. & Fundamenskii, V. S. (1981). Sov. Phys. Solid State, 23, 900–901.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517–2519.

Acta Cryst. (1996). C52, 281-283

Hexachlorotetra- μ_3 -chloro-tetra- μ_3 -tellurooctohexarhenium(III)

YURI V. MIRONOV, JASON A. CODY AND JAMES A. IBERS

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA. E-mail: ibers@chem.nwu.edu

(Received 17 July 1995; accepted 25 September 1995)

Abstract

The title compound, Re₆Te₄Cl₁₀, was obtained by reaction of ReCl₅ with elemental Te in an evacuated sealed fused silica tube at 773 K. The structure contains two independent Re₆ octahedral clusters, each with a crystallographic center of symmetry. The Re atoms are coordinated by four μ_3 -Te atoms and four μ_3 -Cl ligands that are equally distributed over the faces of the metal polyhedron. The remaining six Cl atoms are terminal ligands coordinated to the apices of the Re₆ octahedron. Distance ranges are: Re—Re 2.618 (1)–2.638 (1), Re— μ_3 -L 2.530 (3)–2.679 (2), Re—Cl_{terminal} 2.325 (6)–2.353 (5) Å (L is 50% Te and 50% Cl).

Comment

Octahedral Re₆ clusters are well known (Perrin & Sergent, 1988; Yaghi, Scott & Holm, 1992; Long, Williamson & Holm, 1995). The clusters Re₆ X_4Y_{10} , with X = S, Se, Y = Cl, Br (Leduc *et al.*, 1985; Fedorov *et al.*, 1985; Gabriel, Boubekeur & Batail, 1993) and X = Te, Y = Br (Opalovskii, Fedorov, Lobkov & Erenburg, 1971) have been reported. Only the compounds with X = S, Se and Y = Cl have been characterized by single-crystal X-ray techniques. Whereas the syntheses of the single crystals used in earlier structural studies involved

high temperatures (973–1073 K), synthesis of the title compound, $Re_6Te_4Cl_{10}$, required only 773 K.

The title compound is isostructural with $Re_6S_4Cl_{10}$ and $Re_6Se_4Cl_{10}$. These compounds contain an Re_6 octahedron surrounded by a cube of four Te atoms and four Cl atoms. The Te and Cl atoms are randomly distributed over the eight corners of the cube. The remaining six Cl atoms ($Cl_{terminal}$) are coordinated to the Re atoms at the apices of the octahedron. As expected (Table 2), the Re—Re and Re—Cl_{terminal} distances in Re₆Te₄Cl₁₀ agree well with those of the S and Se analogues, and the Re—Te/Cl distances [2.530(3)– 2.679(2) Å] are slightly longer [Re—S/Cl 2.401(3)– 2.447(3) Å, Re—Se/Cl 2.49–2.51 Å]; bond angles are as expected.

Fig. 1. Molecular structure showing 75% probability displacement ellipsoids. Unique atoms are labeled; each molecule has a crystallographic center of inversion. Atoms labeled L are 50% Te and 50% Cl.

Fig. 2. Stereoview down the *b* axis of the unit cell of $\text{Re}_6\text{Te}_4\text{Cl}_{10}$. The Re atoms are drawn as filled circles, capping atoms as open circles, and $\text{Cl}_{\text{terminal}}$ atoms as shaded circles.

Re₆Te₄Cl₁₀

I	•	
ĽX	регіп	ientai

The title compound was obtained by reaction of ReCl₅ with elemental Te (molar ratio 1:1) in an evacuated sealed fused silica tube. The reaction tube was held at 773 K for 24 h and cooled at a rate of 2 K h⁻¹. Single crystals formed at one end of the tube.

Crystal data

Re ₆ Te ₄ Cl ₁₀	Cu $K\alpha$ radiation
$M_r = 1982.10$	$\lambda = 1.5418$ Å
Triclinic	Cell parameters from 25
PĪ	reflections
a = 9.004(1) Å	$\theta = 40-41^{\circ}$
b = 9.000(1) Å	$\mu = 121.99 \text{ mm}^{-1}$
c = 12.963 (2) Å	T = 113 (2) K
$\alpha = 85.25(1)^{\circ}$	Plate
$\beta = 85.55 (1)^{\circ}$	$0.126 \times 0.046 \times 0.019 \text{ mm}$
$\gamma = 82.45(1)^{\circ}$	Black
V = 1035.5 (2) Å ³	
Z = 2	
$D_x = 6.357 \text{ Mg m}^{-3}$	
Data collection	

 $R_{int} = 0.0628$

 $\theta_{\rm max} = 69.8^{\circ}$

 $h = -10 \rightarrow 10$

 $k = -10 \rightarrow 10$

 $l = -15 \rightarrow 15$

6 standard reflections

exposure time

frequency: 3 h X-ray

intensity decay: none

CAD-4 diffractometer ω -2 θ scans Absorption correction: analytical $T_{\min} = 0.020, T_{\max} =$ 0.212 6989 measured reflections 3790 independent reflections 2936 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2	Extinction correction:
R(F) = 0.048	SHELXL93 (Sheldrick,
$wR(F^2) = 0.112$	1993)
S = 1.40	Extinction coefficient:
3790 reflections	0.00034 (2)
182 parameters	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.04F_o^2)^2]$	from International Tables
$(\Delta/\sigma)_{\rm max} = -0.08$	for Crystallography (1992,
$\Delta \rho_{\rm max} = 3.19 \ {\rm e} \ {\rm \AA}^{-3}$	Vol. C, Tables 4.2.6.8 and
$\Delta \rho_{\rm min} = -3.65 \ {\rm e} \ {\rm \AA}^{-3}$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}
Rel	-0.00159 (9)	0.51102 (11)	1.35586 (6)	0.0140 (2)
Re2	0.18515 (8)	0.38143 (11)	1.49307 (7)	0.0142 (2)
Re3	-0.09541 (8)	0.32795 (10)	1.50914 (6)	0.0125 (2)
Re4	0.46422 (9)	0.19622 (11)	0.94235 (7)	0.0145 (2)
Re5	0.58241 (9)	0.06894 (11)	1.11139 (7)	0.0136 (2)
Re6	0.31181 (9)	0.02007 (11)	1.07069 (7)	0.0149 (2)
L1†	0.0897 (3)	0.2226 (3)	1.3613 (2)	0.0358 (6)
L2	0.2821 (3)	0.5626 (3)	1.3420 (2)	0.0303 (5)
L3	0.0953 (2)	0.1954 (2)	1.64505 (14)	0.0150 (4)
L4	0.2859 (2)	0.5408 (2)	1.6256 (2)	0.0162 (4)
L5	0.7369 (2)	0.2468 (3)	0.9850 (2)	0.0169 (4)
L6	0.3594 (2)	0.2867 (2)	1.1273 (2)	0.0154 (4)
L7	0.5699 (2)	0.1020 (3)	0.7569 (2)	0.0214 (5)

L8	0.2002 (4)	0.1461 (4)	0.9076 (3)	0.0527 (9)
C11	0.0051 (6)	0.5175 (7)	1.1739 (4)	0.0287 (13)
C12	0.4166 (7)	0.2330 (10)	1.4794 (9)	0.069 (3)
C13	-0.2121 (5)	0.1093 (7)	1.5197 (5)	0.0274 (12)
C14	0.4099 (6)	0.4434 (6)	0.8687 (5)	0.0290 (12)
C15	0.6917 (7)	0.1461 (9)	1.2513 (5)	0.041 (2)
C16	0.0683 (6)	0.0515 (10)	1.1500 (6)	0.046 (2)

f L is 50% Te and 50% (t	L is	50%	Te	and	50%	C
-------------------------	---	------	-----	----	-----	-----	---

Table 2. Selected bond distances (Å)

Re1	2.351 (5)	Re4Cl4	2.353 (5)
Re1-L1	2.615 (3)	Re4—L8	2.558 (3)
Re1-LA ⁱ	2.651 (2)	Re4—L7	2.679 (2)
Re1—L2	2.645 (3)	Re4—Re6 ^ü	2.618(1)
Re1—Re2 ⁱ	2.626 (1)	Re4—Re5	2.622 (1)
Re1—Re3 ⁱ	2.630(1)	Re4—Re5 ⁱⁱ	2.635(1)
Re1—Re3	2.634 (1)	Re4—Re6	2.635(1)
Re1Re2	2.638 (1)	Re4—L6	2.659 (2)
Re1-L3 ⁱ	2.665 (2)	Re4—L5	2.662 (2)
Re2Cl2	2.326 (6)	Re5—L8 ⁱⁱ	2.578 (4)
Re2-L1	2.580 (3)	Re5-Cl5	2.325 (6)
Re2	2.614 (3)	Re5—L5	2.642 (2)
Re2	2.612 (2)	Re5	2.624 (2)
Re2—L3	2.627 (2)	Re5-L7 ⁱⁱ	2.630 (2)
Re2—Re3	2.623 (1)	Re5Re6 ⁱⁱ	2.624 (1)
Re2-Re3 ⁱ	2.633 (1)	Re5—Re6	2.632(1)
Re3-C13	2.339 (6)	Re6Cl6	2.341 (6)
Re3-L4	2.641 (2)	Re6—L8	2.530 (3)
Re3—L2 ⁱ	2.626 (3)	Re6	2.663 (2)
Re3—L1	2.596 (3)	Re6—L7 ⁱⁱ	2.644 (2)
Re3	2.657 (2)	Re6—L5 ⁱⁱ	2.664 (3)

Symmetry codes: (i) -x, 1 - y, 3 - z; (ii) 1 - x, -y, 2 - z.

Initial cell parameters and symmetry information for Re₆Te₄Cl₁₀ were determined from Weissenberg photographs taken at 298 K. Intensity data were processed (Blessing, 1987) and corrected for absorption (de Meulenaer & Tompa, 1965) on an IBM RS/6000 series computer. The final refinement included anisotropic displacement parameters and an extinction parameter. The final difference electron density map showed no feature with a height greater than 1.4% that of a Re atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: peak profile analysis (Blessing, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1994). Software used to prepare material for publication: SHELXTL/PC.

This research was supported by the US National Science Foundation through grant CHE92-24469.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1121). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fedorov, V. E., Mischenko, A. V., Kolesov, B. A., Gubin, S. P., Slovokhotov, Y. L. & Struchkov, Y. T. (1985). Koord. Khim. (Engl. Transl.), 11, 980-984.
- Gabriel, J.-C., Boubekeur, K. & Batail, P. (1993). Inorg. Chem. 32, 2894-2900.

Leduc, L., Perrin, A., Sergent, M., Le Traon, F., Pilet, J. C. & Le Traon, A. (1985). *Mater. Lett.* 3, 209-215.

Long, J. R., Williamson, A. S. & Holm, R. H. (1995). Angew. Chem. Int. Ed. Engl. 34, 226-229.

Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Opalovskii, A. A., Fedorov, V. E., Lobkov, E. U. & Erenburg, B. G. (1971). Russ. J. Inorg. Chem. (Engl. Transl.), 16, 1685.

Perrin, A. & Sergent, M. (1988). New J. Chem. 12, 337-356.

Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford University Press.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Yaghi, O. M., Scott, M. J. & Holm, R. H. (1992). Inorg. Chem. 31, 4778–4784.

Acta Cryst. (1996). C52, 283-284

K₂Mn(VO₃)₄, a New Three-Dimensional Potassium Manganese(II) Polyvanadate

JU-HSIOU LIAO, CATHERINE SIGALA, DOMINIQUE GUYOMARD AND YVES PIFFARD

Institut des Matériaux, Laboratoire de Chimie des Solides, UMR 110 CNRS-Université de Nantes, 2, rue de la Houssinière, 44072 Nantes CEDEX 03, France. E-mail: piffard@cnrs-imn.fr

(Received 6 April 1995; accepted 7 September 1995)

Abstract

The structure of potassium manganese(II) polyvanadate, $K_2Mn(VO_3)_4$, is composed of VO_4 tetrahedra and MnO_6 octahedra. Parallel zigzag polyvanadate $(VO_3)_n^{n-}$ chains of corner-sharing VO_4 tetrahedra are cross-linked by separate MnO_6 octahedra to form a three-dimensional structure with K⁺ cations situated in void space.

Comment

Two potassium manganese vanadates have already been reported: $K_{10}Mn_2V_{22}O_{64}.20H_2O$ and $K_5H_3Mn_3V_{12}O_{40}$.-8H₂O (Ichida, Nagai, Sasaki & Pope, 1989). Both are heteropolyvanadates containing Mn^{IV} cations. The potassium manganese(II) polyvanadate $K_2Mn(VO_3)_4$ has been prepared in a basic medium. Its structure is composed of VO₄ tetrahedra and MnO₆ octahedra (Fig. 1). Each VO₄ tetrahedron shares two of its vertices with two VO₄ tetrahedra to form parallel zigzag (VO₃)^{*n*-} chains of alternating V(1)O₄ and V(2)O₄ tetrahedra, running along [101]. Within a chain, each V(1)O₄ tetrahedron shares its two remaining vertices with two MnO₆ octahedra, whereas each V(2)O₄ tetrahedron shares only one vertex with another MnO₆ octahedron. The fourth O atom, O(6), as yet unshared, of the V(2)O₄ tetrahedron points toward a cavity where a K⁺ cation is situated. Each MnO₆ octahedron is then connected to six different tetrahedra [four V(1)O₄ tetrahedra and two V(2)O₄ tetrahedra] which belong to four different chains. Each K⁺ cation is surrounded by eight O atoms with K—O distances ranging from 2.780 (4) to 3.026 (3) Å. The Mn—O and V—O bonds are unexceptional and correspond well with those typically observed in Mn^{II} and V^V oxides. The shortest V—O distance involves the terminal O atom, O(6), *i.e.* not bonded to Mn, but leading to the shortest K—O distance. Bond-valence sum calculations (Brese & O'Keeffe, 1991; Brown & Altermatt, 1985) confirm oxidation-state assignments.

Fig. 1. Polyhedral representation of $K_2Mn(VO_3)_4$, viewed down the *b* axis.

Experimental

Single crystals of $K_2Mn(VO_3)_4$ were obtained by heating a mixture of $H_2Mn_4O_9.xH_2O$ (0.207 g, 0.5 mmol), V_2O_5 (0.364 g, 2.0 mmol), $K_2S_2O_8$ (0.135 g, 0.5 mmol), 9.5 ml of 1*M* KOH and 0.5 ml of acetone in an autoclave at 453 K (autogenous pressure) for one week.

Crystal data

$K M_{\rm P}(VO)$	Ma Ka andiatian
\mathbf{K}_{2}	NO $\Lambda \alpha$ radiation
$M_r = 528.9$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 8.1678(9) Å	$\theta = 10.3 - 25.1^{\circ}$
b = 9.226(1) Å	$\mu = 4.668 \text{ mm}^{-1}$
c = 8.6395(8) Å	T = 293 K
$\beta = 109.678 (8)^{\circ}$	Plate
V = 613.0(1)Å ³	$0.16 \times 0.11 \times 0.02 \text{ mm}$
Z = 2	Red
$D_r = 2.865 \text{ Mg m}^{-3}$	